3 (Sem-5/CBCS) MAT HE 1/2/3

2023

MATHEMATICS

(Honours Elective)

Answer the Questions from any one Option.

OPTION-A

Paper: MAT-HE-5016

(Number Theory)

OPTION-B

Paper: MAT-HE-5026

(Mechanics)

OPTION-C

Paper: MAT-HE-5036

(Probability and Statistics)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

OPTION-A

Paper: MAT-HE-5016

(Number Theory)

- 1. Answer the following questions as directed: 1×10=10
 - Which of the following Diophantine equations cannot have integer solutions?
 - (i) 33x + 14y = 115 que (33/14)
 - (ii) 14x + 35y = 93
 - (b) State whether the following statement is true or false:

"If a and b are relatively prime positive integers, then the arithmetic progression a, a + b, a + 2b,... contains infinitely many primes."

- (c) For any $a \in \mathbb{Z}$ prove that $a \equiv a \pmod{m}$, where m is a fixed integer.
 - (d) Under what condition the k integers $a_1, a_2, ..., a_k$ form a CRS (mod m)?
 - (e) Find $\sigma(p)$ where p is a prime number.
 - (f) Define Euler's phi function.

Prim. Old (g) If n = 12789, find $\tau(n)$. If x is a real number then show that $[x] \le x < [x] + 1$, where [] represents the greatest integer function. Calculate the exponent of the highest (i) power of 5 that divides 1000! When an arithmetic function f is said to atis - atis be multiplicative? 2×5=10 Answer the following questions: 2. Show that there is no arithmetic progression a, a + b, a + 2b,.... that consists solely of prime numbers. (b) Use properties of congruence to show that 41 divides $2^{20}-1$. Let p > 1 be a positive integer having the property that $p/a \ b \Rightarrow p/a \ or \ p/b$, then prove that p is a prime.

If a is a positive integer and q is its <u>least</u>

3 (Sem-5/CBCS) MAT HE 1/2/3/G

positive divisor then show that $q \leq \sqrt{a}$.

98= 18 b= 9k = (5)

- (e) For $n \ge 3$, evaluate $\sum_{k=1}^{n} \mu(k!)$, here μ is the Mobius function.
- 3. Answer *any four* questions: 5×4=20
 - If (m, n) = 1 and $S_1 = \{x_0, x_1, x_2, ..., x_{m-1}\}$ is a CRS (mod m) and $S_2 = \{y_0, y_1, y_2, ..., y_{n-1}\}$ is a CRS (mod n) then show that the set $S = \{nx_i + my_j : 0 \le i \le m 1, 0 \le j \le n 1\}$ form a CRS (mod mn).
 - (b) Find all integers that satisfy simultaneously

$$x \equiv 5 \pmod{18}; \ x \equiv -1 \pmod{24};$$
$$x \equiv 17 \pmod{33}$$

- (c) If $n \ge 1$ is an integer then show that $\sigma(n)$ is odd if and only if n is a perfect square or twice a perfect square.
- (d) If $a_1, a_2,..., a_k$ form a RRS (mod m) ie. Reduced Residue System modulo m then show that $k = \phi(m)$.

show that $k = \phi(m)$. $nn_i + m_j$ $= (nn_i) - nn_j = nn_i$ $3 \text{ (Sem-5/CBCS) MAT HE } 1/2/3/G 4 \qquad nn_i - nn_j = n$

nn;-nnp) nn;fny, * nnp+mye

NIN 2 1 (mod n1)

DE= NIMUA, +

If x and y be real numbers then (e) show that [x+y] = [x] + [y] and [-x-y] = [-x] + [-y] if and only if one of x or y is an integer.

For n > 2, show that $\phi(n)$ is an even integer. Here, ϕ is the Euler phi function.

Answer either (a) or (b) from each of the following questions: $10 \times 4 = 40$

- Show that every positive integer can be expressed as a product of primes. Also show that apart from the order in which prime factors occur in the product, they are unique. 3+4=7
 - If k integers $a_1, a_2, ..., a_k$ form a CRS (mod m), then show that m = k. 3
- Show that any natural number (b) (i) greater than one must have a prime factor.

12/3/G 5 gcd(min) lu (mn) 2 mn Contd. \$\phi(pKg) 2 pK(i-{5}). pK-{p-1}. 3 (Sem-5/CBCS) MAT HE 1/2/3/G 5

10/20

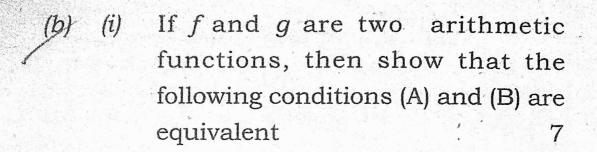
(ii) Prove that if all the n > 2 terms of the arithmetic progression p, p+d, p+2d,..., p+(n-1)d are prime numbers, then the common difference d is divisible by every prime q < n.

- 5. (a) State and prove Wilson's theorem. Is the converse also true? Justify your answer.

 1+6+3=10
 - (b) Let a and m > 0 be integers such that (a, m) = 1, then show that $a^{\phi(m)} \equiv 1 \pmod{m}$, here ϕ is the Euler's phi function. Deduce from it the Fermat's Little theorem. Also find the last two digits of 3^{1000} .

5+2+3=10

6. (a) For each positive integer $n \ge 1$, show that $\phi(n) = \sum_{d \neq n} \mu(d) \frac{n}{d} = n \prod_{p \neq n} \left(1 - \frac{1}{p}\right)$



(A)
$$f(n) = \sum_{d \neq n} g(d)$$

(B)
$$g(n) = \sum_{d/n} \mu(d) f\left(\frac{n}{d}\right) = \sum_{d/n} \mu\left(\frac{n}{d}\right) f(d)$$

(ii) If f is a multiplicative arithmetic function, then show that

$$g_1(n) = \sum_{d \neq n} f(d)$$
 and

$$g_2(n) = \sum_{d \neq n} \mu(d) f(d)$$
 are both

multiplicative arithmetic functions.

7. (a) State and prove Chinese Remainder theorem. 2+8=10

(b) (i) For n > 1, show that the sum of the positive integers less than n and relatively prime to n is $\frac{1}{2}n\phi(n)$. 5

Contd.

3

(ii) If $n \ge 1$ is an integer then show that

$$\prod_{d \neq n} \frac{\tau(n)}{2} \cdot \text{Is } \prod_{d \neq n} d \text{ an integer}$$

when $\tau(n)$ is odd? Justify. 5